Respuesta :
Step-by-step explanation:
[tex]\left \{ {{y=5x} \atop {2y+2x=40}} \right.[/tex]
[tex]\left \{ {{y=5x} \atop {y+x=20}} \right.[/tex]
[tex]\left \{ {{y=5x} \atop {5x+x=20}} \right.[/tex]
[tex]\left \{ {{y=5x} \atop {6x=20}} \right.[/tex]
[tex]\left \{ {{y=5x} \atop {x=\frac{20}{6}=\frac{10}{3}=3\frac{1}{3} }} \right.[/tex]
[tex]\left \{ {{y=5*\frac{10}{3}=\frac{50}{3}=16\frac{2}{3} } \atop {x=3\frac{1}{3} }} \right.[/tex]
Let x be the smaller and y be the larger numbers.
"The larger of two numbers is equal to five times the smaller" means that
[tex]y=5x[/tex]
"Twice the larger plus to two times the smaller" means
[tex]2y+2x[/tex]
And we can plug y=5x here to get
[tex]2y+2x=2(5x)+2x=10x+2x=12x[/tex]
This must equal 40, so we have
[tex]12x=40 \iff x=\dfrac{40}{12}=\dfrac{10}{3}[/tex]
And the larger number will be five times the smaller, i.e.
[tex]y=5\cdot \dfrac{10}{3} = \dfrac{50}{3}[/tex]