Respuesta :
Answer:
Density of final mixture=0.7175[tex]\frac{g}{cm^3}[/tex]. Mass/Volumetric flow rate stream 1= 39793.6[tex]\frac{g}{min}[/tex]/ 58.52 litre/min. Mass/Volumetric flow rate stream 2= 21925.8[tex]\frac{g}{min}[/tex]/ 28.11 litre/min
Explanation:
The first thing to do is the density's determination. For this you can establish a system of equation. For stream 1, you know that 10%wt of ethanol + 90%wt hexane give a density of 0.68 [tex]\frac{g}{cm^3}[/tex]. Calling "X" to the ethanol's density and "Y" Hexane`s one:
[tex]0.1*X+0.9*Y= 0.68(Eq. a)[/tex]
The same applies to stream 2,so:
[tex]0.9*X+0.1*Y= 0.78(Eq. b)[/tex]
Solving: X=0.7925 [tex]g/cm^3[/tex] ; Y= 0.6675[tex]g/cm^3[/tex].
Then, since the final concentration is 40%wt ethanol and 60%wt hexane, the density of the final mixture is:
[tex]\rho_{f}=0.4*0.7925+0.6*0.6675\Rightarrow \rho_{f}=0.7175 \frac{g}{cm^3}[/tex]
Then, you know the volume of the tank (500gallons=1892500cm^3), the density (0.7175 g/cm^3) and mixture (40%wt ethanol;60%hexane). From here you can get the mass of each gas in the tank.
Mass of ethanol=0.4*1892500* 0.7175 g=543147.5 g (grams)
Mass of hexane=0.6*1892500* 0.7175 g=814721.25 g (grams)
These masses come from both stream so it is necessary to know the net volume from each stream. For this, the following equation are needed.
[tex]0.1*X*V_1+0.9*X*V_2=543147.5 g[/tex] (Mass of ethanol)
[tex]0.9*Y*V_1+0.1*Y*V_2=814721.25 g[/tex] (Mass of hexane)
Solving, the volume from stream 1 ([tex]V_1[/tex]) is 1287528.15 cm^3 and the volume from stream 2 ([tex]V_2[/tex]) is 618452.00 cm^3.
Then, the time for complete the tank is 22 min, so the volume rate is:
For stream 1: [tex]Q_1=V_1/(22min*1000cm^3/litre)=58.52 litre/min[/tex]
For stream 2: [tex]Q_2=V_2/(22min*1000cm^3/litre)=28.11 litre/min[/tex]
Finally, multiplying the volume rate by the density of each current the mass flow is:
[tex]\dot{m_1}=0.68\frac{g}{cm^3} *58.52 litre/min*1000cm^3/litre=39793.6 \frac{g}{min} \\\dot{m_2}=0.78\frac{g}{cm^3} *28.11 litre/min*1000cm^3/litre=21925.8 \frac{g}{min}[/tex]