Suppose that a ball is rolling down a ramp. The distance traveled by the ball is given by the function s (t )equals 3 t squared​, where t is the​ time, in​ seconds, after the ball is​ released, and​ s(t) is measured in feet. Find the​ ball's average velocity in each of the following time intervals.

Respuesta :

Answer:[tex]v_{avg}=\frac{3\left ( t_2^2-t_1^2\right )}{t_2-t_1}[/tex]

Step-by-step explanation:

Given

Distance traveled is function of time

[tex]s(t)=3t^2[/tex]

ball average velocity from time [tex]t=t_1 to\ t=t_2[/tex]

distance traveled in [tex]t=t_1 s[/tex]

[tex]s(t_1)=3t_1^2[/tex]

Now Distance traveled in [tex]t=t_2 s [/tex]

[tex]s(t_2)=3t_2^2[/tex]

Distance traveled between [tex]t=t_1 to t=t_2[/tex]

[tex]\Delta s=3\left ( t_2^2-t_1^2\right )[/tex]

[tex]\Delta t=t_2-t_1[/tex]

Average velocity[tex]=\frac{\Delta s}{\Delta t}[/tex]

[tex]v_{avg}=\frac{3\left ( t_2^2-t_1^2\right )}{t_2-t_1}[/tex]

ACCESS MORE