Respuesta :
Answer:
[tex]T(5)=49.11^\circ$C[/tex]
Well, In my opinion, it's still warm enough to drink
Explanation:
Let's use Newton's Law of Cooling given by:
[tex]T(t)=T_a+(T_o-T_a)*e^{-kt}[/tex] (1)
Where:
[tex]T(t)=Temperature\hspace{2 mm}of\hspace{2 mm}the\hspace{2 mm}coffee\hspace{2 mm}at\hspace{2 mm}time\hspace{2 mm}t\hspace{2 mm}(in\hspace{2 mm}minutes)[/tex]
[tex]T_o=Initial\hspace{2 mm}temperature\hspace{2 mm}of\hspace{2 mm}the\hspace{2 mm}coffee=85^\circ$C[/tex]
[tex]Ta=Ambient\hspace{2 mm}temperature=25^\circ$C[/tex]
[tex]k=Time\hspace{2 mm}constant[/tex]
[tex]t=Time\hspace{2 mm}in\hspace{2 mm}minutes[/tex]
Replacing the data provide in (1)
[tex]T(t)=25+(85-25)*e^{-kt}= 25+60*e^{-kt}[/tex] (2)
So, we need to find k. But we know:
[tex]T(1)=75[/tex]
Using that information in (2)
[tex]T(1)=25+60*e^{-k} =75[/tex] (3)
Solving for k in (3)
Sustract 25 to both sides:
[tex]60*e^{-k} =50[/tex]
Multiply both sides by [tex]\frac{1}{60}[/tex]
[tex]e^{-k} =\frac{5}{6}[/tex]
Express [tex]e^{-k}[/tex] as [tex]\frac{1}{e^{k}}[/tex]
[tex]\frac{1}{e^{k}}=\frac{5}{6}[/tex]
Natural logarithm to both sides:
[tex]ln(\frac{1}{e^{k} })=ln(\frac{5}{6} )\\ ln(1)-ln(e^{k})=-0.1823215568\\0-k=-0.1823215568\\k=0.1823215568[/tex]
Replacing k in (2)
[tex]T(t)= 25+60*e^{-(0.1823215568)t}[/tex] (4)
Evaluating t=5 in (4)
[tex]T(5)= 25+60*e^{-(0.1823215568)5}=25+60*e^{-0.911607784} =49.11265432^\circ$C[/tex]
I attached you the graph of the function (4)