The temperature of a cup of coffee is 85oC initially, and becomes 75°C after 1 min. Estimate the temperature after 5 min. Assume the room temperature is 25°C. Is it still warm enough to drink?

Respuesta :

Answer:

[tex]T(5)=49.11^\circ$C[/tex]

Well, In my opinion, it's still warm enough to drink

Explanation:

Let's use Newton's Law of Cooling  given by:

[tex]T(t)=T_a+(T_o-T_a)*e^{-kt}[/tex]    (1)

Where:

[tex]T(t)=Temperature\hspace{2 mm}of\hspace{2 mm}the\hspace{2 mm}coffee\hspace{2 mm}at\hspace{2 mm}time\hspace{2 mm}t\hspace{2 mm}(in\hspace{2 mm}minutes)[/tex]

[tex]T_o=Initial\hspace{2 mm}temperature\hspace{2 mm}of\hspace{2 mm}the\hspace{2 mm}coffee=85^\circ$C[/tex]

[tex]Ta=Ambient\hspace{2 mm}temperature=25^\circ$C[/tex]

[tex]k=Time\hspace{2 mm}constant[/tex]

[tex]t=Time\hspace{2 mm}in\hspace{2 mm}minutes[/tex]

Replacing the data provide in (1)

[tex]T(t)=25+(85-25)*e^{-kt}= 25+60*e^{-kt}[/tex] (2)

So, we need to find k. But we know:

[tex]T(1)=75[/tex]

Using that information in (2)

[tex]T(1)=25+60*e^{-k} =75[/tex] (3)

Solving for k in (3)

Sustract 25 to both sides:

[tex]60*e^{-k} =50[/tex]

Multiply both sides by [tex]\frac{1}{60}[/tex]

[tex]e^{-k} =\frac{5}{6}[/tex]  

Express [tex]e^{-k}[/tex] as [tex]\frac{1}{e^{k}}[/tex]

[tex]\frac{1}{e^{k}}=\frac{5}{6}[/tex]

Natural logarithm to both sides:

[tex]ln(\frac{1}{e^{k} })=ln(\frac{5}{6} )\\ ln(1)-ln(e^{k})=-0.1823215568\\0-k=-0.1823215568\\k=0.1823215568[/tex]

Replacing k in (2)

[tex]T(t)= 25+60*e^{-(0.1823215568)t}[/tex] (4)

Evaluating t=5 in (4)

[tex]T(5)= 25+60*e^{-(0.1823215568)5}=25+60*e^{-0.911607784} =49.11265432^\circ$C[/tex]

I attached you the graph of the function (4)

Ver imagen carlos2112