Respuesta :
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 50=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{50\times 2}{9.81}}\\\Rightarrow t=3.19\ s[/tex]
Time the parachutist falls without friction is 3.19 seconds
[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 50+0^2}\\\Rightarrow v=31.32\ m/s[/tex]
Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity
[tex]v=u+at\\\Rightarrow 11=31.32+9.81t\\\Rightarrow t=\frac{11-31.32}{-67}=0.3\ s[/tex]
So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=0t+\frac{1}{2}\times a\times t^2\\\Rightarrow \frac{s}{2}=\frac{1}{2}at^2[/tex]
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=u1.1+\frac{1}{2}\times a\times 1.1^2[/tex]
Now the initial velocity of the last half height will be the final velocity of the first half height.
[tex]v=u+at\\\Rightarrow v=at[/tex]
Since the height are equal
[tex]\frac{1}{2}at^2=u1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow \frac{1}{2}at^2=at1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow 0.5t^2-1.1t-0.605=0\\\Rightarrow 500t^2-1100t-605=0[/tex]
[tex]t=\frac{11\left(1+\sqrt{2}\right)}{10},\:t=\frac{11\left(1-\sqrt{2}\right)}{10}\\\Rightarrow t=2.65, -0.45[/tex]
Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.
[tex]v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-240^2}{2\times \frac{8}{12}}\\\Rightarrow a=-43200\ ft/s^2[/tex]
Magnitude of acceleration is -43200 ft/s²