Respuesta :

Answer: The change in entropy of the given process is 1324.8 J/K

Explanation:

The processes involved in the given problem are:

[tex]1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)[/tex]

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

[tex]\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})[/tex]      .......(1)

where,

[tex]\Delta S[/tex] = Entropy change

[tex]C_{p,m}[/tex] = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

[tex]T_2[/tex] = final temperature

[tex]T_1[/tex] = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

[tex]\Delta S=m\times \frac{\Delta H_{f,v}}{T}[/tex]      .......(2)

where,

[tex]\Delta S[/tex] = Entropy change

m = mass of ice

[tex]\Delta H_{f,v}[/tex] = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • For process 1:

We are given:

[tex]m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K[/tex]

Putting values in equation 1, we get:

[tex]\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K[/tex]

  • For process 2:

We are given:

[tex]m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K[/tex]

Putting values in equation 2, we get:

[tex]\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K[/tex]

  • For process 3:

We are given:

[tex]m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K[/tex]

Putting values in equation 1, we get:

[tex]\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K[/tex]

  • For process 4:

We are given:

[tex]m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K[/tex]

Putting values in equation 2, we get:

[tex]\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K[/tex]

  • For process 5:

We are given:

[tex]m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K[/tex]

Putting values in equation 1, we get:

[tex]\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K[/tex]

Total entropy change for the process = [tex]\Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5[/tex]

Total entropy change for the process = [tex][21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K[/tex]

Hence, the change in entropy of the given process is 1324.8 J/K