Respuesta :
Answer:
a)[tex]t=1.4\times 10^{-5}\ s[/tex]
b)S= 46.4 cm
Explanation:
Given that
Velocity = 16 Km/s
V= 16,000 m/s
E= 27 mV/m
E=0.027 V/m
d= 22.5 cm
d= 0.225 m
a)
lets time taken by electron is t
d = V x t
0.225 = 16,000 t
[tex]t=1.4\times 10^{-5}\ s[/tex]
b)
We know that
F = m a = E q ------------1
Mass of electron ,m
[tex]m=9.1\times 10^{-31}\ kg[/tex]
Charge on electron
[tex]q=1.6\times 10^{-19}\ C[/tex]
So now by putting the values in equation 1
[tex]a=\dfrac{E q}{m}[/tex]
[tex]a=\dfrac{1.6\times 10^{-19}\times 0.027}{9.1\times 10^{-31}}\ m/s^2[/tex]
[tex]a=4.74\times 10^{9}\ m/s^2[/tex]
[tex]S= ut+\dfrac{1}{2}at^2[/tex]
Here initial velocity u= 0 m/s
[tex]S= \dfrac{1}{2}\times 4.74\times 10^{9}\times (1.4\times 10^{-5})^2\ m[/tex]
S=0.464 m
S= 46.4 cm
S is the deflection of electron.
Answer:
(a). The time is 14.0 μs.
(b). The deflection is 0.47 m.
Explanation:
Given that,
Speed = 16 km/s
Electric field strength = 27 mV/m
Width = 22.5 cm
(a). We need to calculate the time
Using formula of velocity
[tex]v=\dfrac{d}{t}[/tex]
[tex]t=\dfrac{d}{v}[/tex]
Put the value into the formula
[tex]t=\dfrac{22.5\times10^{-2}}{16\times10^{3}}[/tex]
[tex]t=0.0000140625\ sec[/tex]
[tex]t=14.0\times10^{-6}\ sec[/tex]
[tex]t=14.0\ \mu\ s[/tex]
(b). We need to calculate the deflection
Using equation of motion
[tex]s=ut+\dfrac{1}{2}at^2[/tex]
[tex]s=0+\dfrac{1}{2}\times\dfrac{qE}{m}\times t^2[/tex]
Here, s = deflection
q = charge of electron
m = mass of electron
Put the value in the equation
[tex]s=\dfrac{1}{2}\times\dfrac{1.6\times10^{-19}\times27\times10^{-3}}{9.1\times10^{-31}}\times(14.0\times10^{-6})^2[/tex]
[tex]s=0.47\ m[/tex]
Hence, (a). The time is 14.0 μs.
(b). The deflection is 0.47 m.