Respuesta :
Explanation:
According to Rydberg's formula, the wavelength of the balmer series is given by:
[tex]\frac{1}{\lambda}=R(\frac{1}{2^2}-\frac{1}{3^2})[/tex]
R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:
[tex]R=\frac{R_{\infty}}{(1+\frac{m_e}{M})}[/tex]
Here, [tex]R_{\infty}[/tex] is the "general" Rydberg constant, [tex]m_e[/tex] is electron's mass and M is the mass of the atom nucleus
For hydrogen, we have, [tex]M=1.67*10^{-27}kg[/tex]:
[tex]R_H=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{1.67*10^{-27}kg})}\\R_H=1.09677*10^7m^{-1}[/tex]
Now, we calculate the wavelength for hydrogen:
[tex]\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm[/tex]
For deuterium, we have [tex]M=2(1.67*10^{-27}kg)[/tex]:
[tex]R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm[/tex]