Answer:
[tex]h(-5)=-\frac{13}{3}[/tex]
[tex]h(2)=-4[/tex]
[tex]h(4)=-\frac{4}{3}[/tex]
Step-by-step explanation:
For the x=values -5, and 4 (which are different from 2), we can use the top definition of h(x):
[tex]h(x)=-\frac{1}{3} x^2+4\\h(-5)= -\frac{1}{3}(-5)^2+4=-\frac{25}{3} +4=-\frac{25}{3} +\frac{12}{3} =-\frac{13}{3} \\h(-5)= -\frac{1}{3}(4)^2+4=-\frac{16}{3} +4=-\frac{16}{3} +\frac{12}{3} =-\frac{4}{3}[/tex]
or h(2) we need to use the explicit definition that is given in the second description of the function (specific for when x equals 2). That is: h(2) - -4