What is the volume V of a sample of 4.00 mol of copper? The atomic mass of copper (Cu) is 63.5 g/mol, and the density of copper is 8.92 x 10^3kg/m^3. Express your answer in cubic centimeters to 3 significant figures.

Respuesta :

Answer : The volume of a sample of 4.00 mol of copper is [tex]28.5cm^3[/tex]

Explanation :

First we have to calculate the mass of copper.

[tex]\text{ Mass of copper}=\text{ Moles of copper}\times \text{ Molar mass of copper}[/tex]

[tex]\text{ Mass of copper}=(4.00moles)\times (63.5g/mole)=254g[/tex]

Now we have to calculate the volume of copper.

Formula used :

[tex]Density=\frac{Mass}{Volume}[/tex]

Now put all the given values in this formula, we get:

[tex]8.92\times 10^3kg/m^3=\frac{254g}{Volume}[/tex]

[tex]Volume=\frac{254g}{8.92\times 10^3kg/m^3}=2.85\times 10^{-2}L=2.85\times 10^{-2}\times 10^3cm^3=28.5cm^3[/tex]

Conversion used :

[tex]1kg/m^3=1g/L\\\\1L=10^3cm^3[/tex]

Therefore, the volume of a sample of 4.00 mol of copper is [tex]28.5cm^3[/tex]

Answer:[tex]V=28.4\times 10^{-6} m^3[/tex]

Explanation:

Given

no of moles=4

Atomic mass of copper=63.5 g/mol

Density of copper[tex]=8.92\times 10^3 kg/m^3[/tex]

no of moles[tex]=\frac{mass of copper}{Atomic weight}[/tex]

[tex]4=\frac{mass}{63.5}[/tex]

mass=254 gm

and [tex]mass=density\times volume[/tex]

[tex]254\times 10^{-3}=8.92\times 10^3\times V[/tex]

[tex]V=\frac{254\times 10^{-3}}{8.92\times 10^3}[/tex]

[tex]V=28.4\times 10^{-6} m^3[/tex]