Answer:
[tex] 420[/tex] °C
Explanation:
[tex]m_{h}[/tex] = mass of the horseshoe = 0.35 kg
[tex]m_{w}[/tex] = mass of the water = 1.40 L = 1.40 kg
[tex]m_{i}[/tex] = mass of the iron pot = 0.45 kg
[tex]c_{i}[/tex] = specific heat of iron = 450 J kg⁻¹ °C⁻¹
[tex]c_{w}[/tex] = specific heat of water = 4186 J kg⁻¹ °C⁻¹
[tex]T_{hi}[/tex] = initial temperature of the horseshoe = ?
[tex]T_{wi}[/tex] = initial temperature of the water = 22 °C
[tex]T_{pi}[/tex] = initial temperature of the iron pot = 22 °C
[tex]T_{f}[/tex] = final temperature = 32 °C
Using conservation of Heat
[tex]m_{h}c_{i}(T_{hi} - T_{f}) = m_{w}c_{w}(T_{f} - T_{wi}) + m_{i}c_{i}(T_{f} - T_{pi})[/tex]
[tex](0.35)(450)(T_{hi} - 32) = (1.40)(4186)(32 - 22) + (0.45)(450)(32 - 22)[/tex]
[tex](157.5)(T_{hi} - 32) = 60629[/tex]
[tex]T_{hi} - 32 = 384.95[/tex]
[tex]T_{hi} = 420[/tex] °C