An object propelled upwards with an acceleration of 2.0 m / s ^ 2 is launched from rest. After 6 seconds the fuel runs out. Determine the speed at this time and the maximum height at which it reaches.

Respuesta :

Answer:43.34 m

Explanation:

Given

acceleration(a)[tex]=2 m/s^2[/tex]

Initial Velocity(u)=0 m/s

After 6 s fuel runs out

Velocity after 6 s

v=u+at

[tex]v=0+2\times 6=12 m/s[/tex]

After this object will start moving under gravity

height reached in first 6 s

[tex]s=ut+\frac{at^2}{2}[/tex]

[tex]s=0+\frac{2\times 6^2}{2}[/tex]

s=36 m

After fuel run out distance traveled in upward direction is

[tex]v^2-u^2=2as_0[/tex]

here v=0

u=12 m/s

[tex]a=9.8 m/s^2[/tex]

[tex]0-12^2=2(-9.8)(s)[/tex]

[tex]s_0=\frac{144}{2\times 9.8}=7.34 m[/tex]

[tex]s+s_0=36+7.34=43.34 m[/tex]