A car starts from 0 m along a road and accelerates at 0.5 m/s^2 to the right. A second car starts from 1000 m along the road and accelerates at 1.5 m/s^2 to the left. Both cars started from rest. How long after the start do the cars meet? a) 18.3 s b) 21.2 s c) 22.4 s d) 28.6 s e) 31.6 s

Respuesta :

Answer:

e) 31.6 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

Equation of motion

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s_1=0\times t+\frac{1}{2}\times 0.5\times t^2\\\Rightarrow s_1=\frac{1}{2}0.5t^2\ m[/tex]

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s_2=0\times t+\frac{1}{2}\times 0.5\times t^2\\\Rightarrow s_2=\frac{1}{2}1.5t^2\ m[/tex]

[tex]s_1+s_2=1000[/tex]

[tex]\\\Rightarrow 1000=\frac{1}{2}0.5t^2+\frac{1}{2}1.5t^2\\\Rightarrow 1000=\frac{0.5t^2+1.5t^2}{2}\\\Rightarrow 1000=\frac{2t^2}{2}\\\Rightarrow 1000=t^2\\\Rightarrow t=\sqrt{1000}\\\Rightarrow t=31.6\ s[/tex]

Time taken by the cars to meet 31.6 seconds.