Answer:
Explanation:
Given
Height of roof=5 m
Time taken by stone to reach ground 7 s
Let u be the initial velocity
therefore maximum height is h
[tex]v^2-u^2=2as[/tex]
[tex]0-u^2=2(-g)h[/tex]
[tex]u=\sqrt{2gh}[/tex]
time taken to reach max height
v=u+at
0=u-gt
[tex]t=\frac{u}{g}[/tex]
Now time taken to reach ground is [tex]t_2[/tex]
[tex]h+5=0\times t_2+\frac{gt_2^2}{2}[/tex]
[tex]\frac{u^2}{2g}+5=\frac{gt_2^2}{2}[/tex]
[tex]t_2=\sqrt{\frac{u^2+10g}{g^2}}[/tex]
[tex]t_2=\frac{\sqrt{u^2+10g}}{g}[/tex]
total time is [tex]t+t_2=7[/tex]
[tex]\frac{u}{g}+\frac{\sqrt{u^2+10g}}{g}=7[/tex]
[tex]\frac{\sqrt{u^2+10g}}{g}=7-\frac{u}{g}[/tex]
Squaring both side
[tex]u^2+10g=49g^2+u^2-14ug[/tex]
[tex]14u=49g-10[/tex]
u=33.58 m/s
therefore [tex]h=\frac{u^2}{2g}[/tex]
h=57.55 m
maximum height from ground is 57.55+5=62.55 m