A girl, standing on the roof of a house which is 5.00 m high, throws a stone vertic upward. It strikes the ground 7.00 s after being thrown. Calculate: The initial velocity of the stone The maximum height the stone reaches above a. b. i. The roof ii. The ground and c.

Respuesta :

Answer:

Explanation:

Given

Height of roof=5 m

Time taken by stone to reach ground 7 s

Let u be the initial velocity

therefore maximum height is h

[tex]v^2-u^2=2as[/tex]

[tex]0-u^2=2(-g)h[/tex]

[tex]u=\sqrt{2gh}[/tex]

time taken to reach max height

v=u+at

0=u-gt

[tex]t=\frac{u}{g}[/tex]

Now time taken to reach ground is [tex]t_2[/tex]

[tex]h+5=0\times t_2+\frac{gt_2^2}{2}[/tex]

[tex]\frac{u^2}{2g}+5=\frac{gt_2^2}{2}[/tex]

[tex]t_2=\sqrt{\frac{u^2+10g}{g^2}}[/tex]

[tex]t_2=\frac{\sqrt{u^2+10g}}{g}[/tex]

total time is [tex]t+t_2=7[/tex]

[tex]\frac{u}{g}+\frac{\sqrt{u^2+10g}}{g}=7[/tex]

[tex]\frac{\sqrt{u^2+10g}}{g}=7-\frac{u}{g}[/tex]

Squaring both side

[tex]u^2+10g=49g^2+u^2-14ug[/tex]

[tex]14u=49g-10[/tex]

u=33.58 m/s

therefore [tex]h=\frac{u^2}{2g}[/tex]

h=57.55 m

maximum height from ground is 57.55+5=62.55 m