Respuesta :
Answer:
[tex]\lambda=9.12\times 10^{-8}}\times \frac {{{{(n-1)}^2}\times n^2}}{1-2n}\ m[/tex]
[tex]\nu=3.29\times 10^{15}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}[/tex]
Explanation:
[tex]E_n=-2.179\times 10^{-18}\times \frac{1}{n^2}\ Joules[/tex]
For transitions:
[tex]Energy\ Difference,\ \Delta E= E_f-E_i =-2.179\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]
[tex]n_i=n\ and\ n_f=n-1[/tex]
Thus solving it, we get:
[tex]\Delta E=2.179\times 10^{-18}(\frac{1}{n^2} - \dfrac{1}{{(n-1)}^2})\ J[/tex]
[tex]\Delta E=2.179\times 10^{-18}(\frac{{(n-1)}^2-n^2}{{{(n-1)}^2}\times n^2}})\ J[/tex]
[tex]\Delta E=2.179\times 10^{-18}(\frac{n^2+1-2n-n^2}{{{(n-1)}^2}\times n^2}})\ J[/tex]
[tex]\Delta E=2.179\times 10^{-18}(\frac{1-2n}{{{(n-1)}^2}\times n^2}})\ J[/tex]
Also, [tex]\Delta E=\frac {h\times c}{\lambda}[/tex]
Where,
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]
So,
[tex]\frac {h\times c}{\lambda}=2.179\times 10^{-18}(\frac{1-2n}{{{(n-1)}^2}\times n^2}})\ J[/tex]
[tex]\lambda=\frac {6.626\times 10^{-34}\times 3\times 10^8}{2.179\times 10^{-18}}\times \frac {{{{(n-1)}^2}\times n^2}}{{1-2n}}\ m[/tex]
So,
[tex]\lambda=9.12\times 10^{-8}}\times \frac {{{{(n-1)}^2}\times n^2}}{1-2n}\ m[/tex]
Also, [tex]\Delta E=h\times \nu[/tex]
So,
[tex]h\times \nu=2.179\times 10^{-18}\frac{1-2n}{{{(n-1)}^2}\times n^2}}[/tex]
[tex]\nu=\frac {2.179\times 10^{-18}}{6.626\times 10^{-34}}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}[/tex]
[tex]\nu=3.29\times 10^{15}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}[/tex]