Respuesta :
Answer:
(a) [tex]V_{1}[/tex]= 3910 [tex]\frac{m}{s}[/tex]
(b) [tex]V_{2}[/tex]= 5181 [tex]\frac{m}{s}[/tex]
(c) [tex]h_{t}[/tex]= 2762955 m
Explanation:
Using equations of uniformly accelerated motion:
Equations:
- [tex]V_{f} = V_{i} + a*t[/tex]
- [tex]y_{f}=y_{i} +v_{i} + \frac{1}{2} *a*t^{2}[/tex]
- [tex]v_{f} ^{2} =v_{i} ^{2} + 2 *a * Δy[/tex]
- [tex]v_{i1} = 0, t_{1} = 46 s, a_{1} = 85\frac{m}{s^{2} }, a_{2} = 31\frac{m}{s^{2} }, t_{1} = 41 s[/tex]
(a) Using equation 1:
[tex]V_{f1} = V_{i1} + a_{1}*t_{1}[/tex] ⇒ [tex]v_{i1}=0[/tex] Because it upward from rest
[tex]V_{f} = a_{1}*t_{1}[/tex]
[tex]v_{f} = 85 \frac{m}{s^{2} } * 46 s[/tex]
[tex]v_{f}= 3910 \frac{m}{s}[/tex]
(b) Using equation 1:
[tex]V_{f2} = V_{i2} + a_{2}*t_{2}[/tex] ⇒ [tex]v_{i2}=3910[/tex] Because is the is the initial speed in the movement before changing acceleration
[tex]v_{f2} = 3910 \frac{m}{s} + 31 \frac{m}{s^{2} } * 41 s[/tex]
[tex]v_{f2} = 5181 \frac{m}{s} [/tex]
(c) Using equation 2:
[tex]y_{f1}=y_{i1} +v_{i1} + \frac{1}{2} *a_{1}*t_{1}^{2}[/tex] ⇒ [tex]y_{i1}=0[/tex] and [tex]v_{i1}=0[/tex] Because it upward from rest
[tex]y_{f1}= \frac{1}{2} *a_{1}*t_{1}^{2}[/tex]
[tex]y_{f1} = \frac{1}{2} * 85\frac{m}{s^{2} } * 46s^{2}[/tex]
[tex]y_{f1} = 89930 m[/tex]
[tex]y_{f2}=y_{i2} +v_{i2} + \frac{1}{2} *a_{2}*t_{2}^{2}[/tex]⇒ [tex]y_{i2}=y_{f1}[/tex]
[tex]y_{f2}= 89930 m + 3910 \frac{m}{s} + \frac{1}{2} * 31 \frac{m}{s^{2} } *41^{2}[/tex]
[tex]y_{f2} = 119895,5 m[/tex]