Two protons are released from rest, one from location 1 and another from location 2. When these two protons reach location 3, the first proton has a speed that is 2 times the speed of the second proton. If the electric potentials at locations 1 and 2 are 231 V and 115 V, respectively, what is the electric potential at location 3?

Respuesta :

Answer:

76.66V

Explanation:

Accorging to law of conservation of energy:

[tex]\Delta E=0\\E_f=E_i\\K_f+U_f=K_i+U_i[/tex]}

Since the protons are released from rest, the initial kinetic energy is zero and the electric potencial energy is given by: [tex]U=qV[/tex]

Now from [tex]U_f-U_i=-K_f[/tex], we have:

[tex]U_3-U_1=-K_1\\q(V_3-V_1)=-\frac{mv_1^2}{2}\\U_3-U_2=-K_2\\q(V_3-V_2)=-\frac{mv_2^2}{2}\\[/tex]

Recall that [tex]v_1=2v_2[/tex], replacing:

[tex]q(V_3-V_1)=-\frac{m(2v_2)^2}{2}\\q(V_3-V_1)=-\frac{4mv_2^2}{2}\\q(V_3-V_1)=-4K_2(1)\\q(V_3-V_2)=-K_2(2)[/tex]

Rewriting (1) for [tex]-K_2[/tex]:

[tex]q(V_3-V_1)=-4K_2\\-K_2=\frac{q(V_3-V_1)}{4}(3)\\[/tex]

Now, equaling (2) and (3):

[tex]q(V_3-V_2)=\frac{q(V_3-V_1)}{4}[/tex]

Finally, rewriting for [tex]V_3[/tex]

[tex](V_3-V_2)=\frac{V_3-V_1}{4}\\4V_3-4V_2-V_3=-V_1\\3V_3=4V_2-V_1\\V_3=\frac{4V_2-V_1}{3}\\V_3=\frac{4(115V)-231V}{3}\\V_3=76.66V[/tex]