Answer:
The kinetic energy is 86.6 zepto joules.
Explanation:
Given that,
Number of orbit n =5
We know that,
Bohr's radius for hydrogen atom is
[tex]r = 0.53\times10^{-10}\times n^2\ m[/tex]
Now, put the value of n in the formula of radius
[tex]r=0.53\times10^{-10}\times5^2[/tex]
[tex]r =1.33\times10^{-9}\ m[/tex]
We need to calculate the kinetic energy
Using formula of kinetic energy
[tex]E_{k}=\dfrac{1}{4\pi\epsilon_{0}}\times\dfrac{e^2}{2\times r_{s}}[/tex]
Put the value into the formula
[tex]E_{k}=\dfrac{9\times10^{9}\times(1.6\times10^{-19})^2}{2\times1.33\times10^{-9}}[/tex]
[tex]E_{k}=8.66\times10^{-20}\ J[/tex]
We know that,
[tex] 1\ zepto\ joule=1\times10^{-21}\ J[/tex]
The kinetic energy is
[tex]E_{k}=\dfrac{8.66\times10^{-20}}{1\times10^{-21}}[/tex]
[tex]E_{k}=86.6\ zepto\ Joules[/tex]
Hence, The kinetic energy is 86.6 zepto joules.