Respuesta :
Answer:
See explanation
Step-by-step explanation:
A. Prove that angles 1 and 3 are vertical.
1. [tex]\angle 1, \angle 2[/tex] - linear pair of angles
2. [tex]m\angle 1+m\angle 2 =180^{\circ}[/tex] - linear pair of angles are supplementary
3. [tex]\angle 2, \angle 3[/tex] - linear pair of angles
4. [tex]m\angle 2+m\angle 3 =180^{\circ}[/tex] - linear pair of angles are supplementary
5. [tex]m\angle 1+m\angle 3 =m\angle 2+m\angle 3[/tex] - substitution property of equality
6. [tex]m\angle 1 =m\angle 3[/tex] - subtraction property of equality
7. [tex]\angle 1\cong \angle 3[/tex] - definition of congruent angles.
So, any two vertical angles are congruent.
B. Prove that angle 3 and angle 5 are congruent.
1. [tex]\angle 1\cong \angle 5[/tex] - Corresponding Angles Postulate
2. [tex]m\angle 1=m\angle 5[/tex] - definition of congruent angles
3. [tex]\angle 1\cong \angle 3[/tex] - vertical angles
4. [tex]m\angle 1=m\angle 3[/tex] - definition of congruent angles
5. [tex]m\angle 3=m\angle 5[/tex] - substitution property of equality
6. [tex]\angle 3\cong \angle 5[/tex] - definition of congruent angles
So, alternate interior angles are congruent
C. Prove that angle 1 and angle 7 are congruent.
1. [tex]\angle 1\cong \angle 5[/tex] - Corresponding Angles Postulate
2. [tex]m\angle 1=m\angle 5[/tex] - definition of congruent angles
3. [tex]\angle 5\cong \angle 7[/tex] - vertical angles
4. [tex]m\angle 5=m\angle 7[/tex] - definition of congruent angles
5. [tex]m\angle 1=m\angle 7[/tex] - substitution property of equality
6. [tex]\angle 1\cong \angle 7[/tex] - definition of congruent angles
So, alternate exterior angles are congruent