Answer : The final temperature is, [tex]25.0^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
where,
[tex]c_1[/tex] = specific heat of ice = [tex]2.09J/g^oC[/tex]
[tex]c_2[/tex] = specific heat of water = [tex]4.18J/g^oC[/tex]
[tex]m_1[/tex] = mass of ice = 50 g
[tex]m_2[/tex] = mass of water = 200 g
[tex]T_f[/tex] = final temperature = ?
[tex]T_1[/tex] = initial temperature of ice = [tex]-15^oC[/tex]
[tex]T_2[/tex] = initial temperature of water = [tex]30^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]50g\times 2.09J/g^oC\times (T_f-(-15))^oC=-200g\times 4.184J/g^oC\times (T_f-30)^oC[/tex]
[tex]T_f=25.0^oC[/tex]
Therefore, the final temperature is, [tex]25.0^oC[/tex]