If the threshold wavelength for copper is 2665 A, calculate the maximum kinetic energy of a photoelectron generated by ultraviolet light of λ 2000 A. Compute the stopping potential.

Respuesta :

Answer:

[tex]K.E.=2.48\times 10^{-19}\ J[/tex]

Explanation:

Using the expression for the photoelectric effect as:

[tex]E=h\nu_0+\frac {1}{2}\times m\times v^2[/tex]

Also, [tex]E=\frac {h\times c}{\lambda}[/tex]

[tex]\nu_0=\frac {c}{\lambda_0}[/tex]

Applying the equation as:

[tex]\frac {h\times c}{\lambda}=\frac {hc}{\lambda_0}+\frac {1}{2}\times m\times v^2[/tex]

Where,

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

[tex]\lambda[/tex] is the wavelength of the light being bombarded

[tex]\lambda_0[/tex] is the threshold wavelength

[tex]\frac {1}{2}\times m\times v^2[/tex] is the kinetic energy of the electron emitted.

Given, [tex]\lambda=2000\ \dot{A}=2000\times 10^{-10}\ m[/tex]

[tex]\lambda_0=2665\ \dot{A}=2665\times 10^{-10}\ m[/tex]

Thus, applying values as:

[tex]\frac {6.626\times 10^{-34}\times 3\times 10^8}{2000\times 10^{-10}}=\frac {6.626\times 10^{-34}\times 3\times 10^8}{2665\times 10^{-10}}+K.E.[/tex]

[tex]K.E.=\frac {6.626\times 10^{-34}\times 3\times 10^8}{2000\times 10^{-10}}-\frac {6.626\times 10^{-34}\times 3\times 10^8}{2665\times 10^{-10}}[/tex]

[tex]K.E.==\frac{19.878}{10^{16}\times \:2000}-\frac{19.878}{10^{16}\times \:2665}[/tex]

[tex]K.E.=2.48\times 10^{-19}\ J[/tex]