Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Point Cdivides AB in a particular ratio. Match point Cand the ratio into which divides AB with the endpoints of AB.
Point C(-3.6, -3.4) divides AB
in the ratio 2:3
A(4, -3) and B(-7,8)
Point C(4, 1.6) divides AB in
the ratio 3:2
A(-5, 2) and B(7, 14)
Point C(3.5, -2.5) divides AB
in the ratio 1:7
A(-2, -1) and B(-6, -7)
Point C(8, 9) divides AB in
the ratio 5:3
A(3, 4) and B(11, 12)
Point C(-2,5) divides AB in
the ratio 2:6.
Point C(0, 1) divides AB in
the ratio 4:7

Respuesta :

Answer:

The correct answers are:

Point C(-3.6, -3.4) divides AB in the ratio 2 : 3. ↔ A(-2, -1) and B(-6, -7)

Point C(8, 9) divides AB in the ratio 5 : 3. ↔ A(3, 4) and B(11, 12)

Point C(0, 1) divides AB in  the ratio 4 : 7. ↔ A(4, -3) and B(-7, 8)

Point C(-2, 5) divides AB in  the ratio 2 : 6. ↔ A(-5, 2) and B(7, 14)

Step-by-step explanation:

I got it right on the Edmentum test.

The point C(-3.6, -3.4) divides AB in the ratio 2 : 3. ↔ A(-2, -1) and B(-6, -7), point C(8, 9) divides AB in the ratio 5 : 3. ↔ A(3, 4) and B(11, 12).

What is a straight line?

A straight line is a combination of endless points joined on both sides of the point.

As we know if a line segment is divided by a point, so we can find the coordinate of the point by section formula:

[tex]\rm x = \dfrac{mx_2+nx_1}{m+n}[/tex]

[tex]\rm y = \dfrac{my_2+ny_1}{m+n}[/tex]

From the section formula, we can identify the correct match;

The correct matches are:

  • Point C(-3.6, -3.4) divides AB in the ratio 2 : 3. ↔ A(-2, -1) and

        B(-6, -7)

  • Point C(8, 9) divides AB in the ratio 5 : 3. ↔ A(3, 4) and B(11, 12)
  • Point C(0, 1) divides AB in  the ratio 4 : 7. ↔ A(4, -3) and B(-7, 8)
  • Point C(-2, 5) divides AB in  the ratio 2 : 6. ↔ A(-5, 2) and B(7, 14)

Thus, the point C(-3.6, -3.4) divides AB in the ratio 2 : 3. ↔ A(-2, -1) and B(-6, -7), point C(8, 9) divides AB in the ratio 5 : 3. ↔ A(3, 4) and B(11, 12).

Learn more about the straight line here:

brainly.com/question/3493733

#SPJ5