Respuesta :
Answer:
[tex]x\in(-\infty,-2)\cup(5,\infty)[/tex]
Step-by-step explanation:
The duadratic function [tex]g(x)=x^2+20[/tex] begin to exceed the linear function [tex]f(x)=3x+30[/tex] when [tex]g(x)>f(x)[/tex]
Solve this inequality:
[tex]x^2+20>3x+30\\ \\x^2-3x+20-30>0\\ \\x^2-3x-10>0\\ \\x^2-5x+2x-10>0\\ \\x(x-5)+2(x-5)>0\\ \\(x-5)(x+2)>0[/tex]
This inequality is equivalent to
[tex]\left[\begin{array}{l}\left\{\begin{array}{l}x-5>0\\x+2>0\end{array}\right.\\ \\\left\{\begin{array}{l}x-5<0\\x+2<0\end{array}\right.\end{array}\right.\Rightarrow \left[\begin{array}{l}\left\{\begin{array}{l}x>5\\x>-2\end{array}\right.\\ \\\left\{\begin{array}{l}x<5\\x<-2\end{array}\right.\end{array}\right.\Rightarrow \left[\begin{array}{l}x>5\\ \\x<-2\end{array}\right.[/tex]
Answer: [tex]x\in(-\infty,-2)\cup(5,\infty)[/tex]
Answer:
x=5
Step-by-step explanation:
We are given that
[tex]f(x)=3x+30[/tex]
[tex]g(x)=x^2+20[/tex]
We have to find the positive integer value of x for which the quadratic function g(x) begin to exceed the linear function f(x).
[tex]g(x) > f(x)[/tex]
[tex]x^2+20 > 3x+30[/tex]
[tex]x^2+20-3x-30 >0[/tex]
[tex]x^2-3x-10 > 0[/tex]
[tex](x-5)(x+2) > 0[/tex]
[tex] x-5 > 0[/tex]
[tex]x > 5[/tex]
[tex]x+2 > 0[/tex]
[tex]x >-2[/tex]
Interval ([tex]5,\infty)[/tex]
Therefore , g(x) exceed f(x) in the interval ([tex]5,\infty)[/tex].
g(x) begin to exceed the linear function at x=5