A piston having 7.23 g of steam at 110°C increases its temperature by 35°C. At the same time it expands from a volume of 2.00 L to 8.00 L against a constant external pressure of 0.985 bar. The heat capacity of stearm is 1.996 J g-1 Kl. Calculate q, w. Δυ, and ΔΗ in Joules. W-

Respuesta :

Answer : The value of [tex]q,w,\Delta U\text{ and }\Delta U[/tex] is 505 J, -599 J, -94 J and -693 J respectively.

Explanation : Given,

Mass of steam = 7.23 g

Initial temperature = [tex]110^oC[/tex]

Final temperature = [tex](110+35)^oC=145^oC[/tex]

Initial volume = 2 L

Final volume = 8 L

External pressure = 0.985 bar

Heat capacity of steam = 1.996 J/g.K

First law of thermodynamic : It states that the energy can not be created or destroyed, it can only change or transfer from one state to another state.

As per first law of thermodynamic,

[tex]\Delta U=q+w[/tex]

First we have to calculate the heat absorbed by the system.

Formula used :

[tex]Q=m\times c\times \Delta T[/tex]

or,

[tex]Q=m\times c\times (T_2-T_1)[/tex]

where,

Q = heat absorbed by the system = ?

m = mass of steam = 7.23 g

[tex]C_p[/tex] = heat capacity of steam = [tex]1.966J/g.K[/tex]

[tex]T_1[/tex] = initial temperature  = [tex]110^oC=273+110=383K[/tex]

[tex]T_2[/tex] = final temperature  = [tex]145^oC=273+145=418K[/tex]

Now put all the given value in the above formula, we get:

[tex]Q=7.23g\times 1.966J/g.K\times (418-383)K[/tex]

[tex]Q=505J[/tex]

Now we have to calculate the work done.

Formula used :

[tex]w=-p_{ext}dV\\\\w=-p_{ext}(V_2-V_1)[/tex]

where,

w = work done  = ?

[tex]p_{ext}[/tex] = external pressure = 0.985 bar = 0.985 atm   (1 bar = 1 atm)

[tex]V_1[/tex] = initial volume of gas = 2.00 L

[tex]V_2[/tex] = final volume of gas = 8.00 L

Now put all the given values in the above formula, we get :

[tex]w=-p_{ext}(V_2-V_1)[/tex]

[tex]w=-(0.985atm)\times (8.00-2.00)L[/tex]

[tex]w=-5.91L.atm=-5.91\times 101.3J=-599J[/tex]

conversion used : (1 L.atm = 101.3 J)

Now we have to calculate the change in internal energy of the system.

[tex]\Delta U=q+w[/tex]

[tex]\Delta U=505J+(-599J)[/tex]

[tex]\Delta U=-94J[/tex]

Now we have to calculate the change in enthalpy of the system.

Formula used :

[tex]\Delta H=\Delta U+P\Delta V[/tex]

[tex]\Delta H=\Delta U+w[/tex]

[tex]\Delta H=(-94J)+(-599J)[/tex]

[tex]\Delta H=-693J[/tex]

Therefore, the value of [tex]q,w,\Delta U\text{ and }\Delta U[/tex] is 505 J, -599 J, -94 J and -693 J respectively.