Answer:
The total mass of water in on Earth's surface is [tex]3.61419\times 10^{22} kg[/tex].
Explanation:
Total planetary surface area = T = [tex]510,066,000 km^2[/tex]
Total land area of planet = L = [tex]148,647,000 km^2[/tex]
Total water area of planet = W
T = L + W
[tex]510,066,000 km^2=148,647,000 km^2-W[/tex]
[tex]W=510,066,000 km^2-148,647,000 km^2=361,419,000 km^2[/tex]
Volume = Area × Depth
Volume of water on earth = V
V= [tex]361,419,000 km^2\times 100 km^=36,141,900,000 km^3[/tex]
[tex]km^3=10^{12} L[/tex]
[tex]V=36,141,900,000 km^3=36,141,900,000 \times 10^{12} L[/tex]
Total mass of total water on the earth = M
Density of the water,D = 1 g/mL = 0.001 kg/0.001 L=1 kg/L
1 g - 0.001 kg
1 mL = 0.001 L
[tex]D=\frac{M}{V}[/tex]
[tex]M=D\times V[/tex]
[tex]M =1 kg/L\times 36,141,900,000 \times 10^{12} L=3.61419\times 10^{22} kg[/tex]
The total mass of water in on Earth's surface is [tex]3.61419\times 10^{22} kg[/tex].