Respuesta :

Answer:

The area of the shaded segment is approximately [tex]39.3 ft^{2}[/tex]

Solution:

Note: Refer the image attached below.

As given, BN = 8 ft

So radius r = 8

The angle c = [tex]120^{\circ}[/tex]

We know that the area of the shaded part is [tex]=\left(\frac{r^{2}}{2}\right) \times\left(\left(\frac{\pi}{180}\right) \times c-\sin (c)\right)[/tex]

[tex]=\left(\frac{8^{2}}{2}\right) \times\left(\left(\frac{\pi}{180}\right) \times 120-\sin (120)\right)[/tex] (// putting the value of r and c

)

[tex]=\left(\frac{64}{2}\right) \times\left(\left(\frac{\pi}{180} \times 120\right)-\left(\frac{\sqrt{3}}{2}\right)\right)[/tex] (// putting value of   sin⁡(120))

[tex]=32 \times\left(\frac{2 \pi}{3}-\left(\frac{\sqrt{3}}{2}\right)\right)[/tex]

[tex]=32 \times\left(\frac{4 \pi-3 \sqrt{3}}{6}\right)[/tex]

[tex]=\left(\frac{16}{3}\right) \times(4 \pi-3 \sqrt{3})[/tex]

[tex]=5.33 \times((4 \times 3.14)-(3 \times 1.732))[/tex]  (//putting value of π and √3 )

[tex]=5.33 \times(12.56-5.196)[/tex]

[tex]=5.33 \times 7.36[/tex]

= 39.2288 which is approximately, 39.3

So, the area of the shaded part is [tex]39.3 ft^{2}[/tex]

Ver imagen letmeanswer