Respuesta :

KG2022

Answer:

No Solution

Step-by-step explanation:

Assuming the lines are absolute value you must get rid of the other numbers first so:

5 |x+7| + 14 = 8

5 |x+7| = -6

and since absolute values can't equal a negative the answer is NO SOLUTION

Answer:

[tex]\Huge\boxed{\mathsf{\Rightarrow NO \quad SOLUTIONS}}[/tex]

Step-by-step explanation:

TO FIND:

The solution of 5|x+7|+14=8.

Isolate x on one side of the equation.

SOLVE (SOLUTIONS):

First, subtract 14 from both sides.

[tex]\Rightarrow \displaystyle \mathsf{5\left|x+7\right|+14-14=8-14}[/tex]

Solve.

[tex]\displaystyle \mathsf{14-8=6}[/tex]

[tex]\displaystyle \mathsf{5\left|x+7\right|=-6}}[/tex]

Then, divide by 5 from both sides.

[tex]\displaystyle \mathsf{\frac{5\left|x+7\right|}{5}=\frac{-6}{5}}[/tex]

Solve.

Rewrite the equation problem.

[tex]\Rightarrow \displaystyle \mathsf{\left|x+7\right|=-\frac{6}{5}}[/tex]

[tex]\Large\boxed{\mathsf{\Rightarrow THERE \quad ARE \quad NO \quad SOLUTIONS! }}[/tex]

So, there are no solutions.