Respuesta :
Answer with Step-by-step explanation:
We know that the components of velocity are obtained from position as
[tex]u=\frac{dx}{dt}\\\\v=\frac{dy}{dt}[/tex]
Using the given values we obtain
[tex]u=\frac{d(2t^2)}{dt}\\\\u=4t[/tex]
Similarly
[tex]v=\frac{d(t^2-41)}{dt}\\\\u=2t[/tex]
The the velocity function can be written as
[tex]\overrightarrow{v}=4t\widehat{i}+2t\widehat{j}[/tex]
The components of acceleration are obatined from the components of velocity as
[tex]a_{x}=\frac{du}{dt}\\\\a_{y}=\frac{dv}{dt}[/tex]
Using the given values we obtain
[tex]a_x=\frac{d(4t)}{dt}\\\\a_{x}=4[/tex]
Similarly
[tex]a_y=\frac{d(2t)}{dt}\\\\a_y=2[/tex]
The the acceleration function can be written as
[tex]\overrightarrow{a}=4\widehat{i}+2\widehat{j}[/tex]
Thus at time 't=1' the velocity function becomes
[tex]\overrightarrow{v}=4\widehat{i}+2\widehat{j}[/tex]
Thus the component of acceleration in the direction of the given vector [tex]\overrightarrow{r}=\widehat{i}-3\widehat{j}[/tex] can be found by taking the dot product of the 2 vectors
Thus we get
[tex]v_{r}=\overrightarrow{v}\cdot \overrightarrow{r}\\\\v_{r}=(4\widehat{i}+2\widehat{j})\cdot (\widehat{i}-3\widehat{j})\\\\v_{r}=4-6=-2[/tex]
Similarly the dot product is obtained for acceleration as
[tex]a_{r}=\overrightarrow{a}\cdot \overrightarrow{r}\\\\a_{r}=(4\widehat{i}+2\widehat{j})\cdot (\widehat{i}-3\widehat{j})\\\\a_{r}=4-6=-2[/tex]