Respuesta :

Answer and Solution:

As per the question:

Given:

If [tex]A\subseteq B\cup C[/tex]

[tex]A\cap B = \phi[/tex]

To prove:

[tex]A\subseteq \C[/tex]

Proof:

Suppose [tex]t\in A[/tex]

As we know that:

[tex]A\subseteq B\cup C[/tex]

Therefore,

[tex]t\in B[/tex] or [tex]t\in C[/tex]

Now, if we assume that [tex]t\in B[/tex]

Then

[tex]t\in A\cap B[/tex]

Since,

[tex]t\in A[/tex] and [tex]t\in B[/tex]

But

A and B are disjoint set and [tex]A\cap B = \phi[/tex]

Therefore, this is contradictory.

Thus

[tex]t\notin B[/tex]

So,

[tex]t\in C[/tex]

Every element in the set A is also present in the set C

Therefore, [tex]A\subseteq \C[/tex]

Hence, proved.