Respuesta :
Answer:
The system of equations [tex]3x+7y-2z=0\\7x-y+3z=1\\10x+6y+z=1[/tex] has infinitely many solutions [tex]x=-\frac{19}{52}z+\frac{7}{52}\\y=\frac{23}{52}z=-\frac{3}{52}\\z= arbitrary[/tex]
Step-by-step explanation:
We have the following system of equations:
[tex]3x+7y-2z=0\\7x-y+3z=1\\10x+6y+z=1[/tex]
The augmented matrix of the system is:
[tex]\left[\begin{array}{ccc|c}3&7&-2&0\\7&-1&3&1\\10&6&1&1\end{array}\right][/tex]
The first step is to transform the augmented matrix to the reduced row echelon form as follows:
- Row Operation 1: multiply the 1st row by 1/3
[tex]\left[\begin{array}{ccc|c}1&7/3&-2/3&0\\7&-1&3&1\\10&6&1&1\end{array}\right][/tex]
- Row Operation 2: add -7 times the 1st row to the 2nd row
[tex]\left[\begin{array}{ccc|c}1&7/3&-2/3&0\\0&-52/3&23/3&1\\10&6&1&1\end{array}\right][/tex]
- Row Operation 3: add -10 times the 1st row to the 3rd row
[tex]\left[\begin{array}{ccc|c}1&7/3&-2/3&0\\0&-52/3&23/3&1\\0&-52/3&23/3&1\end{array}\right][/tex]
- Row Operation 4: multiply the 2nd row by -3/52
[tex]\left[\begin{array}{ccc|c}1&7/3&-2/3&0\\0&1&-23/52&-3/52\\0&-52/3&23/3&1\end{array}\right][/tex]
- Row Operation 5: add 52/3 times the 2nd row to the 3rd row
[tex]\left[\begin{array}{ccc|c}1&7/3&-2/3&0\\0&1&-23/52&-3/52\\0&0&0&0\end{array}\right][/tex]
- Row Operation 6: add -7/3 times the 2nd row to the 1st row
[tex]\left[\begin{array}{ccc|c}1&0&19/52&7/52\\0&1&-23/52&-3/52\\0&0&0&0\end{array}\right][/tex]
The second step is interpret the reduced row echelon form from this we have the following system:
[tex]x+\frac{19}{52}z=\frac{7}{52}\\y-\frac{23}{52}z=-\frac{3}{52}\\0=0[/tex]
We can see that the last row of the system is 0 = 0 this means that the system has infinitely many solutions.
[tex]x=-\frac{19}{52}z+\frac{7}{52}\\y=\frac{23}{52}z=-\frac{3}{52}\\z= arbitrary[/tex]