Answer:
x = 2, y = 3
Step-by-step explanation:
Given equations,
5x - 3y = 1,
8x - y = 13
Augmented matrix,
[tex]A_b=\begin{bmatrix}5 & -3 |& 1 \\ 8 & -1 |& 13\end{bmatrix}[/tex]
[tex]R_2\rightarrow \frac{1}{8}R_2[/tex]
[tex]\begin{bmatrix}5 & -3 |& 1 \\ 1 & -1/8 |& 13/8\end{bmatrix}[/tex]
[tex]R_1\rightarrow R_1-5R_2[/tex]
[tex]\begin{bmatrix}0 & -19/8 |& -57/8 \\ 1 & -1/8 |& 13/8\end{bmatrix}[/tex]
[tex]R_1\rightarrow \frac{R_1}{-19/8}[/tex]
[tex]\begin{bmatrix}0 & 1 |& 3 \\ 1 & -1/8 |& 13/8\end{bmatrix}[/tex]
[tex]R_2\rightarrow R_2+1/8R_1[/tex]
[tex]\begin{bmatrix}0 & 1 |& 3 \\ 1 & 0 |& 2\end{bmatrix}[/tex]
[tex]R_1[/tex] ↔ [tex]R_2[/tex]
[tex]\begin{bmatrix}1 & 0 |& 2 \\ 0 & 1 |& 3\end{bmatrix}[/tex]
[tex]\implies x+0y = 2\implies x = 2[/tex]
Also,
[tex]0x+y=3\implies y = 3[/tex]
Hence, the solution of the given system would be,
x = 2, y = 3