Answer
given,
diameter of work piece = 50 mm
height = 40 mm
[tex]\epsilon = ln(\dfrac{40}{30}) = 0.2876[/tex]
[tex]Y_f = 600(0.2876)^{0.12} = 516.67 MPa[/tex]
[tex]V = \dfrac{\pid^2L}{4}=\dfrac{\pi\times 50^2\times 40}{4}[/tex]
V = 78,739 mm³
at h = 30 mm [tex]A = \dfrac{V}{h}=\dfrac{78739}{30}[/tex] = 2,618 mm²
[tex]A = \dfrac{\pi d^2}{4}[/tex]
[tex]d = \sqrt{\dfrac{2,618 \times 4 }{\pi}}[/tex]
d = 57.73 mm
[tex]k_f = 1+\dfrac{0.4(0.2)(57.73)}{30}[/tex] = 1.154
F = 1.154 × 516.67× 2618
F = 1560.92 kN
At h = 20 mm
[tex]\epsilon = ln(\dfrac{40}{20}) = 0.693[/tex]
[tex]Y_f = 600(0.693)^{0.12} = 574.18 MPa[/tex]
[tex]V = \dfrac{\pid^2L}{4}=\dfrac{\pi\times 50^2\times 40}{4}[/tex]
V = 78,739 mm³
at h =20 mm [tex]A = \dfrac{V}{h}=\dfrac{78739}{20}[/tex] = 3936.95 mm²
[tex]A = \dfrac{\pi d^2}{4}[/tex]
[tex]d = \sqrt{\dfrac{3936.95 \times 4 }{\pi}}[/tex]
d = 70.8 mm
[tex]k_f = 1+\dfrac{0.4(0.2)(70.8)}{20}[/tex] = 1.283
F = 1.154 × 574.18× 3936.95
F = 2900 kN