Respuesta :

Answer:

[tex]y(x)=tan(-log(cos(x))+\frac{\pi }{3} )[/tex]

Step-by-step explanation:

Rewrite the equation as:

[tex]\frac{dy(x)}{dx}-tan(x)=y(x)^{2} *tan(x)[/tex]

Isolating [tex]\frac{dy}{dx}[/tex]

[tex]\frac{dy}{dx} =tan(x)+tan(x)*y^{2}[/tex]

Factor:

[tex]\frac{dy}{dx} =tan(x)*(1+y^{2} )[/tex]

Dividing both sides by [tex](1+y^{2} )[/tex] and multiplying them by [tex]dx[/tex]

[tex]\frac{dy}{1+y^{2} } =tan(x)dx[/tex]

Integrate both sides:

[tex]\int\ \frac{dy}{1+y^{2} } = \int\ tan(x)  dx[/tex]

Evaluate the integrals:

[tex]arctan(y)=-log(cos(x))+C_1[/tex]

Solving for y:

[tex]y(x)=tan(-log(cos(x))+C_1)[/tex]

Evaluating the initial condition:

[tex]y(0)=\sqrt{3} =tan(-log(cos(0))+C_1)=tan(-log(1)+C_1)=tan(0+C_1)[/tex]

[tex]\sqrt{3} =tan(C_1)\\arctan(\sqrt{3} )=C_1\\60=C_1[/tex]

Converting 60 degrees to radians:

[tex]60degrees*\frac{\pi }{180degrees} =\frac{\pi }{3}[/tex]

Replacing [tex]C_1[/tex] in the diferential equation solution:

[tex]y(x)=tan(-log(cos(x))+\frac{\pi }{3} )[/tex]