Answer:
a) K = 0.09, V = 0.1
b)
[tex]y-intercept= \displaystyle\frac{1}{V}[/tex]
[tex]x-intercept= -\displaystyle\frac{1}{K}[/tex]
Step-by-step explanation:
We are given that:
[tex]f(x) = \displaystyle\frac{K}{V}x + \displaystyle\frac{1}{V}[/tex]
a) If we compare the above equation with the given equation:
[tex]f(x) = 0.9x +10[/tex], then, we get:
[tex]\displaystyle\frac{1}{V} = 10\\\\V = \displaystyle\frac{1}{10} = 0.1\\\\\displaystyle\frac{K}{V} = 0.9\\\\K\times \displaystyle\frac{1}{0.1} = 0.9\\\\K = 0.09[/tex]
K = 0.09, V = 0.1
b) [tex]f(x) = \displaystyle\frac{K}{V}x + \displaystyle\frac{1}{V}[/tex]
y-intercept is the value when x = 0. Putting x = 0,
[tex]y-intercept= \displaystyle\frac{1}{V}[/tex]
x-intercept is the value when y = 0. Putting y = 0, we get,
[tex]0 = \displaystyle\frac{K}{V}x + \displaystyle\frac{1}{V}\\\\x = \displaystyle\frac{V}{K}\times -\displaystyle\frac{1}{V}\\\\x = -\displaystyle\frac{1}{K}[/tex]