Answer:
So natural frequency will be 958.9616 rad/sec
Explanation:
We have given amplitude response [tex]\pm 5[/tex] %
Damped frequency f =80 Hz
So [tex]\omega _d=2\pi\ f=2\times 3.14\times 80=502.4rad/sec[/tex]
So [tex]e^{\frac{-\pi \zeta }{\sqrt{1-\zeta ^2}}}=0.05[/tex]
We know that [tex]\zeta =cos\Theta[/tex]
So [tex]\sqrt{1-\zeta ^2}=sin\Theta[/tex]
So [tex]e^{-\pi cot\Theta }=0.05[/tex]
[tex]{-\pi cot\Theta }=-3[/tex]
[tex]cot\Theta =0.954[/tex]
[tex]\Theta =46.34[/tex]
[tex]cos\Theta =\zeta =0.690[/tex]
Now we know that [tex]\omega _d=\omega _n\sqrt{1-\zeta ^2}[/tex]
[tex]\omega _n=\frac{\omega _d}{\sqrt{1-\zeta ^2}}=\frac{502.4}{\sqrt{1-0.690^2}}=958.9616rad/sec[/tex]
So natural frequency will be 958.9616 rad/sec