Respuesta :

Formula: (x-y)(x²+xy+y²)     ---    x = 11x, y = 2

(11x-2)(121x²+22x+4)

Answer:

[tex]\bold{(11 x-2)\left(121 x^{2}+22 x+4\right)}[/tex]

Given:

[tex]1331 x^{3}-8[/tex]

Step-by-step explanation:

In this problem, we need to find the factors of the given expression.

The factors of a given number/expression are the numbers/expressions which results in given number on multiplying.

The given expression is in an algebraic expression which is:

[tex]x^{3}-y^{3}=1331 x^{3}-8[/tex]

On giving the cube forms,

[tex]\Rightarrow x^{3}-y^{3}=(11 x)^{3}-(2)^{3}[/tex]

Now, the factored form of the above expression is:

[tex]x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)[/tex]

Now,

[tex]\therefore(11 x)^{3}-(2)^{3}=(11 x-2)\left(121 x^{2}+22 x+4\right)[/tex]

The above given is the factor for the given difference in the cube.