Respuesta :
Answer:
[tex]\bold{(11 x-2)\left(121 x^{2}+22 x+4\right)}[/tex]
Given:
[tex]1331 x^{3}-8[/tex]
Step-by-step explanation:
In this problem, we need to find the factors of the given expression.
The factors of a given number/expression are the numbers/expressions which results in given number on multiplying.
The given expression is in an algebraic expression which is:
[tex]x^{3}-y^{3}=1331 x^{3}-8[/tex]
On giving the cube forms,
[tex]\Rightarrow x^{3}-y^{3}=(11 x)^{3}-(2)^{3}[/tex]
Now, the factored form of the above expression is:
[tex]x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)[/tex]
Now,
[tex]\therefore(11 x)^{3}-(2)^{3}=(11 x-2)\left(121 x^{2}+22 x+4\right)[/tex]
The above given is the factor for the given difference in the cube.