Answer:
Step-by-step explanation:
We have the set [tex]T=\{x\in\mathbb{R}:x^2<2\}[/tex]. Now, let us recall that [tex]\sqrt{x^2}=|x|[/tex], and the inequality [tex]x^2<2[/tex] is equivalent to [tex]|x|<\sqrt{2}[/tex], so our set can be written as
[tex]T=\{x\in\mathbb{R}:|x|<\sqrt{2}\}[/tex].
The inequality [tex]|x|<\sqrt{2}[/tex] is equivalent to [tex]-\sqrt{2}<x<\sqrt{2}[/tex]. So,
[tex]T=\{x\in\mathbb{R}:-\sqrt{2}<x<\sqrt{2}\}[/tex]. Thus, [tex]T=(-2,2)[/tex].
Now, we have that [tex]T[/tex] is the open interval (-2,2). From this we can extract all the information we need: