Answer with Step-by-step explanation:
The given equation is
[tex]\frac{dy}{dx}+4y=xy^4[/tex]
Dividing throughout by [tex]y^4[/tex] we get
[tex]\frac{dy}{y^4dx}+\frac{4}{y^3}=x\\\\y^{-4}\frac{dy}{dx}+4y^{-3}=x\\\\[/tex]
Substituting [tex]t=y^{-3}[/tex] in the above equation we get
[tex]dt=-3y^{-4}\cdot \frac{dy}{dx}\\\\y^{-4}\cdot {dy}=\frac{-dt}{3}[/tex]
Thus we get
[tex]\frac{-dt}{dx}+12t=3x[/tex]
Which is a linear differential equation of the form
[tex]t'+p(x)t=q(x)dx}[/tex][/tex]
whose solution is given by
[tex]te^{\int p(x)dx}=\int (e^{\int p(x)}q(x)dx[/tex]
Solving we get
[tex]te^{12x}=\int 3e^{12x}\times xdx\\\\te^{12x}=3x\cdot \frac{e^{12x}}{12}-\int 3\times \frac{e^{12x}}{12}dx\\\\te^{12x}=\frac{xe^{12x}}{4}-\frac{e^{12x}}{48}\\\\t=\frac{x}{4}-\frac{1}{48}\\\\\frac{1}{y^3}=\frac{x}{4}-\frac{1}{48}+c[/tex]