Respuesta :
Answer: 1 - C
2 - E
3 - no answer
4 - B
Step-by-step explanation:
A. [tex]y = 3x+x^2[/tex]
[tex]y' = 3 + 2x\\y'' = 2[/tex]
- Replace in 1:
[tex]y'' + y = 0[/tex]
[tex]2 + 3x + x^2 \neq 0[/tex]
So, A is not an answer for 1
- Replace in 2:
[tex]y' = 3y[/tex]
[tex]3+2x = 3(3x + x^2)[/tex]
So, A is not an answer for 2
- Replace in 3
[tex]2x^2y'' + 3xy'= y[/tex]
[tex]2x^2(2) + 3x(3 + 2x) = 4x^2 + 9x + 6x^2 \neq 3x+x^2[/tex]
So, A is not an answer for 3
- Replace in 4
[tex]y'' + 6y' + 8y = 0[/tex]
[tex]2 + 6(3+2x)+8(3x + x^2) = 2+18+12x+24x+8x^2 \neq 0[/tex]
So, A is not an answer for 4
B. [tex]y = e^{-4x}[/tex]
[tex]y' = -4e^{-4x}[/tex]
[tex]y'' = 16e^{-4x}[/tex]
- Replace in 1
[tex]y'' + y = 0[/tex]
[tex]16e^{-4x} -4e^{-4x} = 12e^{-4x} \neq 0[/tex]
So, B is not an answer for 1
- Replace in 2
[tex]y' = 3y[/tex]
[tex]-4e^{-4x} \neq 3e^{-4x}[/tex]
So, B is not an answer for 2
- Replace in 3
[tex]2x^2y'' + 3xy' = y[/tex]
[tex]2x^2(16e^{-4x}) +3x(-4e^{-4x}) \neq e^{-4x}[/tex]
So, B is not an answer for 3
- Replace in 4
[tex]y'' + 6y' +8y = 0[/tex]
[tex]16e^{-4x} + 6(-4e^{-4x}) + 8e^{-4x} = e^{-4x}(16-24+8) = 0[/tex]
So, B is an answer for 4
C. [tex]y = sin(x)[/tex]
[tex]y' = cos(x)[/tex]
[tex]y'' = -sin(x)[/tex]
- Replace in 1
[tex]y'' + y = 0[/tex]
[tex]-sin(x) + sin(x) = 0[/tex]
So, C is an answer for 1
We jump to
D. [tex]y = x^{12}[/tex]
[tex]y' = 12x^{11}[/tex]
[tex]y'' = 132 x^{10}[/tex]
- Replace in 2
[tex]y' = 3y[/tex]
[tex]12x^{11} \neq 3x^{12}[/tex]
So, D is not an answer for 2
- Replace in 3
[tex]2x^2y'' + 3xy' = y[/tex]
[tex]2x^2(132x^{10}) + 3x(12x^{11}) = 300x^{12} \neq x^{12}[/tex]
So, D is not an answer for 3
E. [tex]y = 6e^{3x}[/tex]
[tex]y' = 18e^{3x}[/tex]
[tex]y'' = 54e^{3x}[/tex]
- Replace in 2
[tex]y' = 3y[/tex]
[tex]18e^{3x} = 3(6e^{3x}) = 18e^{3x}[/tex]
So, E is an answer for 2