Match each differential equation to a function which is a solution.
FUNCTIONS
A. y=3x+x2y=3x+x2,
B. y=e−4xy=e−4x,
C. y=sin(x)y=sin⁡(x),
D. y=x12y=x12,
E. y=6e3xy=6e3x,

Differential Equations

1. y″+y=0y″+y=0
2. y′=3yy′=3y
3. 2x2y″+3xy′=y2x2y″+3xy′=y
4. y″+6y′+8y=0y″+6y′+8y=0

Respuesta :

Answer: 1 - C

2 - E

3 - no answer

4 - B

Step-by-step explanation:

A. [tex]y = 3x+x^2[/tex]

[tex]y' = 3 + 2x\\y'' = 2[/tex]

  • Replace in 1:

[tex]y'' + y = 0[/tex]

[tex]2 + 3x + x^2 \neq 0[/tex]

So, A is not an answer for 1

  • Replace in 2:

[tex]y' = 3y[/tex]

[tex]3+2x = 3(3x + x^2)[/tex]

So, A is not an answer for 2

  • Replace in 3

[tex]2x^2y'' + 3xy'= y[/tex]

[tex]2x^2(2) + 3x(3 + 2x) = 4x^2 + 9x + 6x^2 \neq 3x+x^2[/tex]

So, A is not an answer for 3

  • Replace in 4

[tex]y'' + 6y' + 8y = 0[/tex]

[tex]2 + 6(3+2x)+8(3x + x^2) = 2+18+12x+24x+8x^2 \neq 0[/tex]

So, A is not an answer for 4

B. [tex]y = e^{-4x}[/tex]

[tex]y' = -4e^{-4x}[/tex]

[tex]y'' = 16e^{-4x}[/tex]

  • Replace in 1

[tex]y'' + y = 0[/tex]

[tex]16e^{-4x} -4e^{-4x} = 12e^{-4x} \neq 0[/tex]

So, B is not an answer for 1

  • Replace in 2

[tex]y' = 3y[/tex]

[tex]-4e^{-4x} \neq 3e^{-4x}[/tex]

So, B is not an answer for 2

  • Replace in 3

[tex]2x^2y'' + 3xy' = y[/tex]

[tex]2x^2(16e^{-4x}) +3x(-4e^{-4x}) \neq  e^{-4x}[/tex]

So, B is not an answer for 3

  • Replace in 4

[tex]y'' + 6y' +8y = 0[/tex]

[tex]16e^{-4x} + 6(-4e^{-4x}) + 8e^{-4x} = e^{-4x}(16-24+8) = 0[/tex]

So, B is an answer for 4

C. [tex]y = sin(x)[/tex]

[tex]y' = cos(x)[/tex]

[tex]y'' = -sin(x)[/tex]

  • Replace in 1

[tex]y'' + y = 0[/tex]

[tex]-sin(x) + sin(x) = 0[/tex]

So, C is an answer for 1

We jump to

D. [tex]y = x^{12}[/tex]

[tex]y' = 12x^{11}[/tex]

[tex]y'' = 132 x^{10}[/tex]

  • Replace in 2

[tex]y' = 3y[/tex]

[tex]12x^{11} \neq 3x^{12}[/tex]

So, D is not an answer for 2

  • Replace in 3

[tex]2x^2y'' + 3xy' = y[/tex]

[tex]2x^2(132x^{10}) + 3x(12x^{11}) = 300x^{12} \neq x^{12}[/tex]

So, D is not an answer for 3

E. [tex]y = 6e^{3x}[/tex]

[tex]y' = 18e^{3x}[/tex]

[tex]y'' = 54e^{3x}[/tex]

  • Replace in 2

[tex]y' = 3y[/tex]

[tex]18e^{3x} = 3(6e^{3x}) = 18e^{3x}[/tex]

So, E is an answer for 2