Answer:
If [tex]a + b = 0[/tex] then [tex]a = 0[/tex] and [tex]b =0[/tex]
a | b | a + b (answer)
0 | 0 | 0
0 | 1 | 1
0 | 2 | 2
1 | 0 | 1
2 | 0 | 2
1 | 1 | 2
2 | 1 | 3
Step-by-step explanation:
Considering the following conditions for the real numbers:
[tex]a\geq 0\\b\geq 0[/tex]
Following the rules of these in-equations, it is possible to deduce:
[tex]a + b \geq 0[/tex]
Then, if the proposed statement is:
[tex]a + b = 0[/tex]
The conditions above shall comply the requirements established, but first, analyzing the statement:
If [tex]a \geq 0[/tex] and [tex]b \geq 0[/tex] then [tex]a + b \geq a[/tex], [tex]a + b \geq b[/tex] and [tex]a + b \geq 0[/tex].
If [tex]a = 0[/tex] and b a non negative real number, then [tex]a + b \geq b[/tex], but because to [tex]a = 0[/tex], then [tex]a + b = b[/tex]. Due to the commutative property of sums, the same behavior will be presented if [tex]b = 0[/tex] and a a non negative real number.
According to that, if [tex]a + b = 0[/tex], then [tex]a = 0[/tex] and [tex]b = 0[/tex].