8. Is the following statement true or false? Justify your conclusion. If a and b are nonnegative real numbers and a + b =0, then a = 0. Either give a counterexample to show that it is false or outline a proof by completing a know-show table.

Respuesta :

Answer:

If [tex]a + b = 0[/tex] then [tex]a = 0[/tex] and [tex]b =0[/tex]

a  | b | a + b (answer)

0 | 0 | 0

0 | 1  | 1

0 | 2 | 2

1  | 0 | 1

2 | 0 | 2

1  | 1  | 2

2 | 1  | 3

 

Step-by-step explanation:

Considering the following conditions for the real numbers:

[tex]a\geq 0\\b\geq 0[/tex]

Following the rules of these in-equations, it is possible to deduce:

[tex]a + b \geq 0[/tex]

Then, if the proposed statement is:

[tex]a + b = 0[/tex]

The conditions above shall comply the requirements established, but first, analyzing the statement:

If [tex]a \geq 0[/tex] and [tex]b \geq 0[/tex] then [tex]a + b \geq a[/tex], [tex]a + b \geq b[/tex] and [tex]a + b \geq 0[/tex].

If [tex]a = 0[/tex] and b a non negative real number, then [tex]a + b \geq b[/tex], but because to [tex]a = 0[/tex], then [tex]a + b = b[/tex]. Due to the commutative property of sums, the same behavior will be presented if [tex]b = 0[/tex] and a a non negative real number.

According to that, if  [tex]a + b = 0[/tex], then [tex]a = 0[/tex] and [tex]b = 0[/tex].