Respuesta :
f(x) = 3x^2
g(x) = 4x^3 + 1
(fog)(x) = 3(4x^3 +1)^2
= 48x^6 + 24x^3 + 3
The degree is the highest exponent on the variable, which is 6.
Answer: The degree of (fog)(x) =6
Step-by-step explanation:
Given:
[tex]f(x)=3 x^{2}[/tex]
[tex]g(x)=4 x^{3}+1[/tex]
To find:
The degree of (fog) (x)
Solution:
Formula used for calculating fog (x) is given as:
(fog) (x)=[f(g(x))]
Substitute the value of f(x) and g(x) in the above equation, we get
(fog) (x)=[tex]3\left(4 x^{3}+1\right)^{2}[/tex]
=[tex]3\left[16 x^{6}+2\left(4 x^{3}+1\right)+1\right][/tex]
=[tex]3\left[16 x^{6}+8 x^{3}+2+1\right][/tex]
=[tex]48 x^{6}+24 x^{3}+6+3[/tex]
=[tex]48 x^{6}+24 x^{3}+9[/tex]
(fog) (x)=[tex]48 x^{6}+24 x^{3}+9[/tex]
Result:
The degree of (fog) (x)=[tex]48 x^{6}+24 x^{3}+9[/tex] is Six.