Respuesta :

Answer:  The given logical equivalence is proved below.

Step-by-step explanation:  We are given to use truth tables to show the following logical equivalence :

P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P)

We know that

two compound propositions are said to be logically equivalent if they have same corresponding truth values in the truth table.

The truth table is as follows :

P     Q      ∼P     ∼Q     P⇔ Q    ∼P ∨ Q     ∼Q ∨ P        (∼P ∨ Q)∧(∼Q ∨ P)

T     T         F        F             T            T                   T                       T

T     F         F        T             F             F                   T                       F

F     T         T        F             F            T                   F                       F

F     F         T        T             T            T                   T                       T

Since the corresponding truth vales for P ⇔ Q and (∼P ∨ Q)∧(∼Q ∨ P) are same, so the given propositions are logically equivalent.

Thus, P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P).