Answer : The value of equilibrium constant for this reaction at 262.0 K is [tex]3.35\times 10^{2}[/tex]
Explanation :
As we know that,
[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy = ?
[tex]\Delta H^o[/tex] = standard enthalpy = -45.6 kJ = -45600 J
[tex]\Delta S^o[/tex] = standard entropy = -125.7 J/K
T = temperature of reaction = 262.0 K
Now put all the given values in the above formula, we get:
[tex]\Delta G^o=(-45600J)-(262.0K\times -125.7J/K)[/tex]
[tex]\Delta G^o=-12666.6J=-12.7kJ[/tex]
The relation between the equilibrium constant and standard Gibbs free energy is:
[tex]\Delta G^o=-RT\times \ln k[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy = -12666.6 J
R = gas constant = 8.314 J/K.mol
T = temperature = 262.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:
[tex]-12666.6J=-(8.314J/K.mol)\times (262.0K)\times \ln k[/tex]
[tex]k=3.35\times 10^{2}[/tex]
Therefore, the value of equilibrium constant for this reaction at 262.0 K is [tex]3.35\times 10^{2}[/tex]