Respuesta :

Answer : The value of equilibrium constant for this reaction at 262.0 K is [tex]3.35\times 10^{2}[/tex]

Explanation :

As we know that,

[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]

where,

[tex]\Delta G^o[/tex] = standard Gibbs free energy  = ?

[tex]\Delta H^o[/tex] = standard enthalpy = -45.6 kJ = -45600 J

[tex]\Delta S^o[/tex] = standard entropy = -125.7 J/K

T = temperature of reaction = 262.0 K

Now put all the given values in the above formula, we get:

[tex]\Delta G^o=(-45600J)-(262.0K\times -125.7J/K)[/tex]

[tex]\Delta G^o=-12666.6J=-12.7kJ[/tex]

The relation between the equilibrium constant and standard Gibbs free energy is:

[tex]\Delta G^o=-RT\times \ln k[/tex]

where,

[tex]\Delta G^o[/tex] = standard Gibbs free energy  = -12666.6 J

R = gas constant  = 8.314 J/K.mol

T = temperature  = 262.0 K

K = equilibrium constant = ?

Now put all the given values in the above formula, we get:

[tex]-12666.6J=-(8.314J/K.mol)\times (262.0K)\times \ln k[/tex]

[tex]k=3.35\times 10^{2}[/tex]

Therefore, the value of equilibrium constant for this reaction at 262.0 K is [tex]3.35\times 10^{2}[/tex]