Respuesta :
Answer: The temperature when the volume and pressure has changed is 274 K
Explanation:
To calculate the pressure when temperature and volume has changed, we use the equation given by combined gas law. The equation follows:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1,V_1\text{ and }T_1[/tex] are the initial pressure, volume and temperature of the gas
[tex]P_2,V_2\text{ and }T_2[/tex] are the final pressure, volume and temperature of the gas
We are given:
[tex]P_1=760mmHg\\V_1=175L\\T_1=15^oC=[15+273]K=288K\\P_2=640mmHg\\V_2=198L\\T_2=?K[/tex]
Putting values in above equation, we get:
[tex]\frac{760mmHg\times 175L}{288K}=\frac{640mmHg\times 198L}{T_2}\\\\T_2=274K[/tex]
Hence, the temperature when the volume and pressure has changed is 274 K
Answer:
T₂ = 274.5 K = 1.35 °C
Explanation:
Given: V₁ = 175 L, P₁ = 760 mmHg, T₁ = 15°C = 288.15 K (∵ 1°C=273.15 K)
V₂ = 198 L, P₂ = 640 mmHg, T₂ = ? K
To calculate T₂, we use the General Gas Equation: [tex]\frac{P_{1}V_{1}}{T_{1}}= \frac{P_{2}V_{2}}{T_{2}}[/tex]
[tex]\frac{(760 mmHg)\times (175 L)}{288.15 K}= \frac{(640 mmHg)\times(198 L)}{T_{2}}[/tex]
[tex]T_{2}= \frac{288.15 K \times 640 mmHg \times 198 L}{760 mmHg\times 175 L}[/tex]
[tex]T_{2}= \frac{36514368}{133000} = 274.5 K[/tex]
Therefore, T₂ = 274.5 K = 1.35 °C