Answer : The vapor pressure of propane at [tex]25.0^oC[/tex] is 17.73 atm.
Explanation :
The Clausius- Clapeyron equation is :
[tex]\ln (\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_1}-\frac{1}{T_2})[/tex]
where,
[tex]P_1[/tex] = vapor pressure of propane at [tex]25.0^oC[/tex] = ?
[tex]P_2[/tex] = vapor pressure of propane at normal boiling point = 1 atm
[tex]T_1[/tex] = temperature of propane = [tex]25.0^oC=273+25.0=298.0K[/tex]
[tex]T_2[/tex] = normal boiling point of propane = [tex]-42.04^oC=230.96K[/tex]
[tex]\Delta H_{vap}[/tex] = heat of vaporization = 24.54 kJ/mole = 24540 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
[tex]\ln (\frac{1atm}{P_1})=\frac{24540J/mole}{8.314J/K.mole}\times (\frac{1}{298.0K}-\frac{1}{230.96K})[/tex]
[tex]P_1=17.73atm[/tex]
Hence, the vapor pressure of propane at [tex]25.0^oC[/tex] is 17.73 atm.