Answer: 0.0257 moles of [tex]Fe^{3+}[/tex] and 0.0257 moles of [tex]SO_4^{2-}[/tex]
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.
[tex]Molarity=\frac{moles}{\text {Volume in L}}[/tex]
moles of [tex]Fe_2(SO_4)_3=Molarity\times {\text {Volume in L}}=0.147\times 0.175L=0.0257moles[/tex]
The balanced reaction for dissociation will be:
[tex]Fe_2(SO_4)_3\rightarrow Fe^{3+}+SO_4^{2-}[/tex]
According to stoichiometry:
1 mole of [tex]Fe_2(SO_4)_3[/tex] gives 1 mole of [tex]Fe^{3+}[/tex] and 1 mole of [tex]SO_4^{2-}[/tex]
Thus there will be 0.0257 moles of [tex]Fe^{3+}[/tex] and 0.0257 moles of [tex]SO_4^{2-}[/tex]