Respuesta :
Answer:
x=108
Step-by-step explanation:
see the attached figure to better understand the problem
we know that
m∠RQS≅m∠QLK -----> by corresponding angles
m∠KLM+m∠QLK=180° -----> by supplementary angles (consecutive interior angles)
we have that
m∠RQS=x° ----> given problem
so
m∠QLX=x°
m∠KLM=(x-36)° ----> given problem
substitute
[tex](x-36)\°+x\°=180\°\\2x=180+36\\2x=216\\x=108[/tex]
Answer:
x = 108
Step-by-step explanation:
The attached image shows all the information given in the question.
[tex]\angle RQS = \angle QLK\\SP \parallel KN\\\angle RQS=x\\\angle KLM= (x-36)[/tex]
We are given that
Angle RQS is congruent to Angle QLK
Thus, we can write:
[tex]\angle QLK = x[/tex]
Since angle QLK and angle KLM forms a straight angle, we can write:
[tex]\angle KLM + \angle QLK = 180^\circ\\x + (x-36) = 180\\2x - 36 = 180\\2x = 216\\x = 108[/tex]
Thus, x = 108
[tex]\angle QLK= \angle RQS =108^\circ\\\angle KLM = 72^\circ[/tex]