Respuesta :

Answer:

a) The first term is a=7

b) The common difference is d=3

c) The sum of the first 15 term is 420.    

Step-by-step explanation:

Given : If the fifth term of a AP is 19 and the tenth term is 34.

To find : a) the first term b) The common difference c) The sum of the first 15 term ?

Solution :

The Arithmetic progression is in the form, [tex]a,a+d,a+2d,a+3d,...[/tex]

Where, a is the first term and d is the common difference

The nth term of the A.P is [tex]a_n=a+(n-1)d[/tex]

The fifth term of a AP is 19.

[tex]a_5=a+(5-1)d[/tex]

[tex]19=a+4d[/tex] ...(1)

The tenth term is 34.

[tex]a_{10}=a+(10-1)d[/tex]

[tex]34=a+9d[/tex] ...(2)

Solving (1) and (2) by subtracting the equations,

[tex]34-19=(a+9d)-(a+4d)[/tex]

[tex]15=a+9d-a-4d[/tex]

[tex]15=5d[/tex]

[tex]d=3[/tex]

Substitute in (1),

[tex]19=a+4(3)[/tex]

[tex]a=19-12[/tex]

[tex]a=7[/tex]

a) The first term is a=7

b) The common difference is d=3

c) The sum of the first 15 term is given by, [tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]

[tex]S_{15}=\frac{15}{2}[2(7)+(15-1)3][/tex]

[tex]S_{15}=\frac{15}{2}[14+(14)3][/tex]

[tex]S_{15}=\frac{15}{2}[14+42][/tex]

[tex]S_{15}=\frac{15}{2}[56][/tex]

[tex]S_{15}=15\times 28[/tex]

[tex]S_{15}=420[/tex]

The sum of the first 15 term is 420.