Answer:
a) The first term is a=7
b) The common difference is d=3
c) The sum of the first 15 term is 420.
Step-by-step explanation:
Given : If the fifth term of a AP is 19 and the tenth term is 34.
To find : a) the first term b) The common difference c) The sum of the first 15 term ?
Solution :
The Arithmetic progression is in the form, [tex]a,a+d,a+2d,a+3d,...[/tex]
Where, a is the first term and d is the common difference
The nth term of the A.P is [tex]a_n=a+(n-1)d[/tex]
The fifth term of a AP is 19.
[tex]a_5=a+(5-1)d[/tex]
[tex]19=a+4d[/tex] ...(1)
The tenth term is 34.
[tex]a_{10}=a+(10-1)d[/tex]
[tex]34=a+9d[/tex] ...(2)
Solving (1) and (2) by subtracting the equations,
[tex]34-19=(a+9d)-(a+4d)[/tex]
[tex]15=a+9d-a-4d[/tex]
[tex]15=5d[/tex]
[tex]d=3[/tex]
Substitute in (1),
[tex]19=a+4(3)[/tex]
[tex]a=19-12[/tex]
[tex]a=7[/tex]
a) The first term is a=7
b) The common difference is d=3
c) The sum of the first 15 term is given by, [tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]
[tex]S_{15}=\frac{15}{2}[2(7)+(15-1)3][/tex]
[tex]S_{15}=\frac{15}{2}[14+(14)3][/tex]
[tex]S_{15}=\frac{15}{2}[14+42][/tex]
[tex]S_{15}=\frac{15}{2}[56][/tex]
[tex]S_{15}=15\times 28[/tex]
[tex]S_{15}=420[/tex]
The sum of the first 15 term is 420.