Answer:
We have the following system
[tex]\left[\begin{array}{cc}4&2\\-2&2\\0&-2\\-2&2\end{array}\right] \left[\begin{array}{cc}x_1\\x_2\end{array}\right]=\left[\begin{array}{ccc}0\\0\\0\\0\end{array}\right][/tex]
The column 1 represent the coeficients of the unknown [tex]x_1[/tex], and the column 2 represent the values of the coefficients of the unknown [tex]x_2[/tex]. Then the k-th component of each column represents the coefficient of the unknowns in the k-th equation of the linear system.
So the corresponding linear system is
[tex]4x_1+2x_2=0\\-2x_1+2x_2=0\\0x_1-2x_2=0\\-2x_1+2x_2=0[/tex]