Respuesta :

Answer:

The statement [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q)[/tex] is equivalent to [tex]\lnot p[/tex], [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q) \equiv \lnot p [/tex]

Step-by-step explanation:

We need to prove that the following statement [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q)[/tex] is equivalent to [tex]\lnot p[/tex] with the use of Theorem 2.1.1.

So

[tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q) \equiv[/tex]

[tex]\equiv (\lnot p \land \lnot(\lnot q))\lor(\lnot p \land \lnot q)[/tex] by De Morgan's law.

[tex]\equiv (\lnot p \land q)\lor(\lnot p \land \lnot q)[/tex] by the Double negative law

[tex]\equiv \lnot p \land (q \lor \lnot q)[/tex] by the Distributive law

[tex]\equiv \lnot p \land t[/tex] by the Negation law

[tex]\equiv \lnot p [/tex] by Universal bound law

Therefore [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q) \equiv \lnot p [/tex]

Ver imagen franciscocruz28