Answer:
The statement [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q)[/tex] is equivalent to [tex]\lnot p[/tex], [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q) \equiv \lnot p [/tex]
Step-by-step explanation:
We need to prove that the following statement [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q)[/tex] is equivalent to [tex]\lnot p[/tex] with the use of Theorem 2.1.1.
So
[tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q) \equiv[/tex]
[tex]\equiv (\lnot p \land \lnot(\lnot q))\lor(\lnot p \land \lnot q)[/tex] by De Morgan's law.
[tex]\equiv (\lnot p \land q)\lor(\lnot p \land \lnot q)[/tex] by the Double negative law
[tex]\equiv \lnot p \land (q \lor \lnot q)[/tex] by the Distributive law
[tex]\equiv \lnot p \land t[/tex] by the Negation law
[tex]\equiv \lnot p [/tex] by Universal bound law
Therefore [tex]\lnot(p\lor\lnot q)\lor(\lnot p \land \lnot q) \equiv \lnot p [/tex]